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ABSTRACT

This study treats the ducted propeller with finite

blade number at zero angle of attack in a uniform, incom-

pressible, inviscid flow. The approximation* of a lightly

loaded propeller and of thin airfoil theory are made. In

the absence of thickness efiects, appropriate vortex dis-

tributions represent the blades, the shroud and their res-

pective shed vo:rtices. By means of Fourier analysis of the

velocity field in piopeller fixed coordinatcs, the problem

for an arbitrary, radial blade circulation distribution is

reduced to a form similar to the ring wing integral equations

of J. Weissinger. The kernels are not the same for the two

cases except for the zeroth harmonic. The equation for

this harmonic, which corresponds to a generalized actuator

disk formulation, is Ldentical to that of an equivalent,

axisymmetric ring wing. The effect of blade number, blade

circulation profile and strength, propeller advance ratio

and tip clearance, and location of the propeller plane are

found and may be evaluated over a range of parameters from

tables provided. A numerical example is given.
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Am. .,. amplitudes of sine term of Fourier harmonic

3A. ... amplitudes of :osne term of Fourier harmonic

CU. ... amplitudes of complex Fourier harmonic

D distance between vortex element and field
point

FY, ... functions of complex kernel of intermediate
form of governing equations
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t time variable
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V bound vortex &iroud distribution

6 Kronecker delta

E shroud camber

E effective shroud camber
e
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xshroud chord to diameter ratio, c/2R
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a Nl/JL

T dumw time variable

AT U-r/R
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( )" denotes total differentiation of a function
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r(r) bound blade circulation

rip
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e.g., Ax = (x-X v)

0dummy angular variable of integration

xj characteristic functions giving effective shroud
camber

constant angular velocity of propeller
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TNRE-DIMS IONAL THEORY
OF

DUCTED PROPELLERS

ZTRODUCTION

Since the conception of the ducted propo'ler or Kort

nozzle in the early 1930's°2, considerable interest has

been aroused! in this configuration, particularly for VTOL

applications in recent years. Despite its promise, however,

its inherent "parametric" complexity has p::Qcluded the

achievement of comprehensive theoretical and eperimental

developments. Consequently, the design of an optimum ductod

propll-r has been impo sible.

Previous theories have been reviewed by A. Sacks and

J. rnell3 , L. eyerhoff and A. Finkelstein 4, and J. Pegrue5 .

There are four main categories: (i) nomentum methods, (ii)

singularity distribution methods, (iii) "boundary value" or

streamline methods, and _v) combinations of, or approxima-

tions to, these method#. In general, though, the basic effects

associated with a propeller of finite blade number are removed

by its representation as a disk supporting a unifoLa pressure
6,7,8

jump
The objective of the present investigation is to derive

a three-dinensional theory without the disk approximation.

The simplest ducted propeller situation is chosen which retains

most of the principal parameters and yet remains amenable to

mathematical solution.
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This case corresponds to the ducted propeller with discrete

blading at zero angle of attack in a uniform, unbounded stream

of inviscid, incompressible fluid. The shroud, blade and hub

thick nesses are assumed to be zero and the shroud camber as

well as the ratio of the blade chord to the shroud chord are

considered small.

The appropriate theoretical model consists of a cylindri-

cal surface o distributed vortices positioned with its axis

coincident to a uniformly translating and rotating stream.

The blades are introduced as individual, radial vortex lines

of varying circulation with accompanying helical vortex sheets.

The blade circulation distribution is specified arbitrarily.

Formulation of the problem follows the general procedure

of thin lifting surface theory. The inherent periodicity of

the shroud loading and the harmonic nature of the vropeller

field reduces the governing equations to decoupled, single

integral form. Either dlr ,-t! nr by modifications, solutions

are expressible in terms of the results of J. Weissinger .

Certain self-sustaining shroud load distributions appear

which seem analogous to the recent instability results of

H. Ludwieg10

It is hoped that this solution will provide not only abso-

lute information for design, optimization and experimental

test programming, but may justify extended effort for the

more difficult cases of angle-of-attack and static thrust.



CHAPTER ONE

BASIC FORMULATION

1.1 Physical Problem and geeral Background

The problem %ftich we have chosen to study is a ducted

propeller in steady forward flight at zero incidence in an

incompressible fluid otherwise at rest. The forward velo-

city will be assumed sufficiently large and the shroud camber

and blade loading low enough that the theory of linearized

perturbations may be ,sel. For this investigation the

Reynolds number will be taken 1'.rge enough to confine via-

crnim effects to the boundary layer. This will be reasonably

valid except in the neighborhood of the propeller tip if it

penetrates the shroud bound^ry layer.

With respect to the geometry of the ducted propeller

configuration, any thickness effects due to the hub, pro-

peller blade or shroud will be postponed to subsequent

investigations. However, the effective camber which they

produce can readily be incorporated within the frawework of

the present analysis.

Because of the viscous skin drag associated with long

shrouds, shrouds of moderate chord t- diameter ratio are of

principal interest. Fortunately, this is consistent with

the usual thin airfoil approximations of satisfying the

boundary conditions on the chordline by a .-ound vortex dis-

tribution on the chord.iie. KMchemann and Weber have sug-

3



gested a value of two as an upper limit to this ratio for

finite length effects in their work on annular airfoils6.

On the other hand, the ratio of the shroud chord to

the blade chord is expected to be fairly large. That is,

for conventional propeller blades, the aspect ratio is quite

large and the shroud should be approximately of the same

diameter as the propeller. Therefore in order to gain as

much thrust improvement as possible by preventing slipstream

contraction, the shroud has to be lengthened. Since this

increases the viscous shear drag, an optimum configuration

can exist. Sufficient for the moment, it is reasonable to

take the shroud length much greater than the blade chord as

stated.

In ordinary thin airfoil theory, we have two classes

of problems: (i) the direct one in which the pressure or

velocity on the atrfotl is given and the airfoil geometry

is to be determined; and (ii) the inverse problem in which

the airfoil geometry is given and the pressure or velocity

on the airfoil is to be determined. For the case we are

examining here, we have two bodies, the shroud and the pro-

peller, and hence we have four pcsibilities of combining

the above appropriately. In other words, we have either

(i) the direct-direct; (ii) the direct-inverse; (Nii) the

inverse-direct; or (iv) the inverse-inverse, where the first

word refers to the shroud and the second, the propeller. In

consideration of engineering applications, comparison with
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experimental measurements, configuration optimization and

possible boundary layer studies, the inverse-direct problem

has been selected. Nevertheless, throughout much of the

analysis, it is immaterial as to which case is considered.

The shroud geometry will be assumed as well as the blade

circulation. We are not directly concerned with the chordwise

loading of the blade or the determination of its geometry

since we can replace it with a radial vortex spike by virtue

of our shroud-blade-chord ratio assumption. The problem, then,

will be to obtain the shroud pressure distribution.

To formulate the problem, appropriate singular solutions

of Euler's equations will be distributed to represent the

shroud, blades and their shed vortices. In general the

strengths of these distributions will be determined from the

requirement that the component of the total velocity normal

to the shroud surface be zero and that the Kutta-Joukowski

condition be satisfied along the shroud trailing edge.

1.2 Coordinate System

In a space-fixed coordinate system, the flow is unsteady

due to both the motion of the duct and the propeller. The

duct has the uniform translation U and the propeller, the

constant rotation r as well as Lhe translation U , see

Fig. 1.1. Because of this rotation, the motion is also

unsteady in a uniformly translating system fixed in the duct.

However, consider a uniformly translating and rotating system
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fixed to the propeller, say the Cartesian coordinates (x'yz)

or the equivalent cylindrical coordinates (x,r 0) . Increas-

ing 9 is chosen in accordance with the righthand rule for

positive advance along the positive x-axis and is measured

from the positive y-axis.

In this system, Fig. 1.2, we see that the incoming "free

stream" has an axial component of magnitude U in the posi-

tive x-direction and a tangential component Slr in the posi-

tive or increasing 0-direction. Now, the blades are at rest

with respect to the propeller coordinates, but the duct is

rotating with angular speed a about the propeller axis as

shown. Since the duct is axisymetrical about its axis of

rotation and only the normal component of the velocity is

required to vanish, the rotational motion of the duct does

not affect the potential solution. In other words this

action is arbitrary and can be set equal to zero in the pro-

peller-fixed coordinates. This mathematically equivalent

model t 'en corresponds to the physical case in which the

shroud is rotating along with the propeller, see Fig. 1.3.

A simple case might illustrate this mathematical

equivalence. Consider a two-dimensional thin airfoil in a

uniform, inviscid stream. Then, suppose an infinitesimally

thin belt is stretched around the airfoil and set into motion.

For the resultant flow, the normal boundary and Kutta con-

ditions are unaltered by this motion and so the solrtion is

the sxame ax before. In a reel fluid, of course, the boundary
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layer would be changed and hence also the potential flow,

proportional to the modification of the effective airfoil

shape. This correction is of higher order, however, and so,

consistent with the usual thin airfoil approximations, the

two are equivalent.

If the axis of the duct wee inclined at an angle of

attack a with respect to the translational motion, no

equivalent steady flow would exist. That iz, in this case

there are time dependent incoming velocity components. With

the stream U coincident with the xz-plane at time t - 0

we have for the free steam velocity SU in propeller-fixed

coordinates,

U cos a + 11r

+ U sin (9-nt) iT +

cos (e-Qt) 4 1 sin a (1.1)

Setting a - 0 , we see Eq. (1.1) reduces to the steady com-

ponents U and Qr we have already noted.

1.3 The Mathe&matical Model

With these considerations we can proceed to a de-

tailed examination of the model. Fig. 1.11 gives the

geometrical properties of the configuration. The plane
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determined by the leading edge of the duct is perpendicular

to the x-axis at x = -c/2 and the trailing edge, at

x = +c/2 . The propeller disk of radius Rp is normal to

the x-axis at x = Xp with the Nt h of the N blades

lying in the xy-plane. The slope of the shroud with respect

to the x-axis in any xr-plane is designated by tan c(x)

which is taken positive for increasing shroud radius with

increasing x . A reference shroud radius is R . For

convenience with respect to tip clearance, R is taken an

the radius of the shroud camber surface in the propeller plane.

In accordance with our assumptions, we can now repre-

sent the configuration by a distribution of bound and shed

vortices. First, the propeller Nodel follows classical

theory. The circulation distribution of the bound radial

vortex spikes replacing the blades is designated by P(r V)

the subscript v being generally used to designate the

location of a vortex element. Each blade, by symuetry, has

identical loading and is accompanied by its shed semi-infinite

helical vortex sheet of strength dr/dr v per unit radial

length. The helical shape is assumed to be determined by,

the incoming stream components at rv * its point of shedding.

For the shroud we have a form of a lifting surface. The bound

vortex distribution per unit length is "y(xv ,ev: rs) where

r. = rs (xs) denotes the radius of the shroud camber surface.

Because of y's angular dependence generated by the finite

blade number, each vortex ring has a trailing vortex cylinder
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made up of an infinite number of semi-infinite helical vor-

tices of strength (6-y/69v)(rsde) . The positive senses of

these vortices will be defined later.

For a given propeller loading, we can now formulate an

equation to determine y • Let q be the total velocity

vector given by

q = + r+ ,r+ + (1.2)

where has been defined previously and sr is the velo-

city induced by the N bound blade vortices; q r', by the

shed blade vortex sheets; _ by the shroud bound vortices;

and by the shed shroud vortices. With 3 • and

Si as the axial and radial components of q respectively

then for the flow to be everywhere tangent to the shroud, we

require from Fig. 1.4,

q(x ,rs,8 ,) i
tan c(xs) = 3 (xs8 rs.es) (13)

where rs(Xs) has been defined. Eq. (1.3) is exact within

our model limitations. If we assume e << w/2 , tan E = c+O(E

Thus for a moderately loaded prupeller oz O(r/RpU) << i
* " O(U) and hence from Eq. (1.3), j = O(v) = O(UE)

This leads to the linearization of the RHS of Eq. (1.3). Expan,

ing q -- . and _q - as
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q(x5 ,r ,PO) • jr q(Xs,R,es) -i

+ .T(r 8 -R) +

r =R

q(xs,rs,es) " q(x_,R,_s) " i

+ r s (rsR) + (1.4)

and noting that (r s-R) = O(ce) , we have to retain only the

first terms from consideration of the previous orders. In

addition, from Eq. (1.2) with a = C for qu of Eq. (1.1),

the axial component can be replaced by U and Eq. (1.3)

reduces to a familiar thin airfoil type approximation,

.q(xs#R*O" •
a(Xs) =e) - (1.5)

That is, we have only to satisfy a perturbation boundary con-

dition on a mean shroud or reference surface. Since the radial

component of the free stream is zero for zero angle of attack,

Eq. (1.1), we have only to calculate the induced radial com-

ponents. The bound and shed shroud vortices as formulated are

located by rs . But consistent with the orders we have

retained, an expansion as carried out for _ - L and q • ar

shows that use of the mean radius R is sufficient. In sub-

sequent discussions, _q. and will be so considered

without further notation.
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Eq. (1.5), together with a Kutta condition at the trail-

ing edge of the shroud, is the basic equation for the deter-

mination of the shroud vorticity and hence the loading. The

propeller inflow could also be calculated and hence the

required blade geometry for the selected blade loading.

1.4 Velocity Influence Functions

In order to express the radially induced flow, or wash,

of Eq. (1.5) as well as the inflow components, it is conveni-

ent to introduce three elementary velocity fields. These

fields, or influence functions, 4' ' d are due to vortices

of unit strength and unit length which lie in the axial, radial

and circumferential directions respectively as shown in Fig. 1.5

In general, then, we have from the Biot-Savart law for

the velocity induced by an tnfinitesimal vortex in an incom-

pressible fluid,

.1i XD (1.6)

where I is a unit vector in the positive direction of our

desired element and D is the vector from the element at

(xv,rv,ev) to the field point (x,r,e)

Do = (x-x V ) i + (y-yv) + (Z-z_) _ (1.7)
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BASIC VORTEX ELEMENTS TO DESCRIBE THE FLOW FIELD
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with the relatior

X = X

y - r cos e
z - r sin e (1.8)

between the cylindrical and Cartesian coordinate systems. The

unit vectors ij and k are directed along the x,y and z-axes

respectively.

From Fig. 1.5 we have for the axial element, or Xh

simply

I=i (1.9)

where positive circulation is chosen in accord nce with a

righthand screw advancing in the positive x-direction. For

the radial element, or I , again using the righthand rule,

we have

I = cos ev j + sin ev k (1.10)

with positive circulation corresponding to advance in the

positive radial direction. Finally, for the circumferential

element, or ld '

I = sin v + cos ev k (1.11)
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for positive circulation in the increasing e-direction. This

sign convention on the shroud will turn out opposite to that

usually employed in wing theory.

1.5 Calculation of the induced Velocities

From L and d , the velocity fields for both the

propeller and shroud vortices may he simply expressed,

and from Ih and .d , the fields of the shed helical

vortices.

For *F ° we integrate over each blade and sum the

results over all blades. Or, from Fig. 1.4, we have

= 2 r(rv) Lp(xprv.2wt/N) drv  (1.12)

where Eqs. (1.6) through (1.8) together with Eq. (1.10) give

i and the argument of " locates a vortex el~ment, the

field point remaining unspecified for the moment. The index

t denotes the blade number, the Nth blade being chosen

arbitrarily to coincide with the y-axis.

Likewise for the shroud, we have by integration over 7

placed on the reference cylinder o. radius R

Ic/ 2Lr 4 Y(xvev) L(xvR.ev),R devdxv (1.13)

Id is given by Eqs. (1.6) through (1.8) and Eq. (1.11).
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To express 5r, and ,0 we require the velocity

induced by a semi-infinite helical vortex of unit strength,

with its axis coincident with the x-axis. As assumed, the

shape is determined by the free stream. That is. the coor-

dinates of any point on the helix which originates at

(xv ,rv ey) are given by (xv+UT,rv.ev+nT) . Here T is

the conventional variable representing the time for a vortex

element, convected by the free stream to travel from the point

of shedding to that point. Subsequently, then, we recognize

that the helical filament can be represented by an infinite

series of component elements parallel and concentric to the

x-axis. Integrating over these component elements of length

Ud'r and r v dT respectively, we obtain the desired velocity

field. This can be comyared with the results of other pro-

peller investigations, see T. Moriya 1 , for example.

From Helmholtz's theorem, the strength per unit length

of the vortices shed from the propeller is -r'. The prime

denotes differentiation with respect to the argument and the

adopted sign convention introduces the minus sign. Carrying

the integration and summation over the propeller, we have

r f -r'(r)fCO (U+Ld rval) drdrv
C0

where

+Ur, r 27rt,'!;,QT)4(p v
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Id (X+UT, r 27rJ/N+,) (1.14)

jh is given by Eqs. (1.6)-(1.8) and Eq. (1.9), and .d was

given for . The integration over the dummy time parameter

T is identified as the velocity field of the semi-infinite

helix of unit strength.

Finally, we can derive _., for the shroud, where the

strength per unit length of the shed vortices is - y/a v .

Integrating over the reference surface of radius R as for

f/ L - (!u+R.!,2 R) d.t devdxv
V-c/2 I7

where,

id -.I.(Xv+UT,R,ev+QT) (1.15)

and h and ld were previously noted.

Superposition of the velocity fields expressed by

Eqs. (1.12), (1.13), (1.14) and (1.15) determine, within the

limits of our approximation, the total induced velocity at any

field point.
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1.6 Formulation of Basic Equation for

With the total induced velocity field we can complete

the explicit formulation of Eq. (1.5) for the shroud vortex

distribution y . In particular, we need only the radial

components of the velocity evaluated on the reference surface.

To determine these components, we first carry out the

required scalar triple products i - I X D . The radial unit

vector ir is given by Eq. (1.10) with 0v  replaced by 0

I, by Eqs. (1.9), (1.10) and (1.11); and D, by Eqs. (1.7)

and (1.8). With x = x 1 r = R and e = e , we have

!T " -b X D = - r sin (e -Ov) (1.16)

ir " I X D - (xs-xv) sin (9s-0V) (1.17)-r -

S- .1d x D = (xS-x v ) cos (eS-ev) (1.18)

The other quantity we need is the magnitude of the vector D

from any element to the field point given by

D2 = Ax2 2 2  2Er os v (1.19)D v + + rv -

for field points on the shroud where xv  (x - ) and

I,6 -- (es-ev)

The radial shroud velocity components now follow from

Eqs. (1.12), (1.13), (1.14) and (1.15). For the propeller



contributions, the bound vortices give,

" -sin 6 p(r ) D 3 dr (1.20)

0

where 4xp (x-x) , ef E (8s-7.,') and D is given bywhee p xs - p)

Eq. (1.19) with x v  replaced by xp and ev , by 2nIr/N

For the shed vortices,

q--I" i = I- r rv f(U sin 6e,

1-1 0 0

- CzxpTCos Ae IT D-3 d'drv  (1.21)

with ApT (x -u) , te = (e8 -2nI/N-i1T) ; and x

replaced by (X p+UT) and ev  by (21ri/N+QT) in D . For

the bound shroud vortices, we have

c/2

q-Y. r t xvI Y -3cos Aev d6vdxv (1.22)

with rv  replaced by R in Eq. (1.19); and

P c/2 7r CR f (U sin ae
"n co c/2 "-dd 1.23)

-& DVT cos a VT ) D - 3 dT devdxv (1.23)
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for the shed shroud vortices with Ax (x -xUT)

VT ( -6v- T) ; and xv replaced by (xv+UT) , rv by R

and e v by ('9v+QT) in Eq. (1.19).

If Eqs. (1.20), (1.21), (1.22) and (1.23) together with

Eq. (1.19) are substituted into Eqs. (1.2) and (1.5), the

basic equation for the shroud vorticity is determined in terms

of a surface or double integral relation. As such it has the

general form familiar to lifting surface theory. That is, for

a specified propeller loadirg, the propeller terms may be

grouped with the shroud camber term forming an effective camber.

The shroud bound and shed vortices are then required to produce

a flow tangent everywhere to this fictitious surface, as well

as to satisfy a Kutta-Joukowski condition at the trailing edge.

Not only does this equation have this general form, but it

may be compared in detail with the ring wing surface theory of

9.12J. Weissinger . In fact if i is set equal to zero and the

T integration carried out, the form is identical with that of

a modified ring wing having non-axtsymmietric camber.

On the other hand, if the blade loading is not given, then

a second equation must be written. In view of our approxima-

tion, a "lifting" line model would be appropriate. This equa-

tion would be coupled with Eq. (1.5) by the change in the

effective local angle of attack of each blade element pro-

duced by the total inflow.



CHAPTER TWO

DERIVATION OF GOVERNING EQUATIONS

2.1 Periodic Expansion of Shroud Vortex Distribution

In general the inversion of a lifting surface type equa-

tion is exceedingly complex. However, in the present case as

well as for a ring wing, the cloaing of the shroud surface

introduces a natural periodicity which yields an essential

simplification.

In particular the str-ngth of the bound shroud vortices

may be expanded in a complex FL "ter series to permit inte-

gration over the 9 variable, ct
v

U(x,6 ) U Cm(X) e (2.1)

M= -00

The speed U is inserted for conver .ence to non-dimension-

alize certain subsequent expressionc. Only mN components

are used as indicated by the period,city in 21r/N of the

propeller velocities of Eq. (1.20) and (1.21) for the equal

blade loading of the present case, Since y is real, we

require that the complex coefficients for positive (+m)

and negative (-m) integers be co'plex conjugates, or

2C-m - Bm + i Am

2C+m Bm -A m (2.2)
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where A and B are the real coefficients of the sine andmn m

cosine terms respectively of a trigonometric Fourier series over

positive m for y .

For m = 0 , we note A0 = 0 arO 2C0 = B0 ; i.e.,

UBo/2 is the zeroth Fourier componeztt of the shroud vorti-

city in the propeller-fixed coordinates, or equivalently, the

time-independent part in the shroud-fixed coordinates. As

such its physical role will be shown to determine the time

average difference in shroud inner and outer static pressures.

2.2 Reduction of Shroud Contributions

Before substitution of Eq. (2.1) into Eqs. (1.22) and

(1.23) for the shroud contributions to the radial velocities,

we introduce the radius R as a reference length, or

x x/R .... (2.3)

This will limit the explicit occurrence of the shroud chord

to diameteL ratio defined as

x = -r (2.L )2R

to the limits of integration over the coefficients Am and

Bm  We also change our variable of integration from ev  t.o
Ae /2 . Since the integrand is periodic in e v we adjust

v v
the new limits of integraticon from -n/2 to 71/2 .In add;.-
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tion, the separation distance D is simplified by means of

the cosine double angle formula.

Now using Eq. (2.1) in terms of the new quantities in

Eq. (1.22), the order of integrations and summation may be

interchanged because Cm has at worst a square root singu-

larity at the shroud leading edge. We can then split out

the 9 dependence from the integrations to obtain,s

*jY UZC eiMNs f m m(XV) F .YM~av )dX_ (2.5)
m= -00-

where,

F _ A r/ e'2imNO cos 28
m-1n/2 (a 2 4 sin 2 8)3/2 dO (2.6)

In other words, Eq. (2.5) represents the Fourier expansion

of radial velocity induced on the shroud by the bcund shroud

vortices. The coefficients of this expansion are srm-ly the

integrals of the coefficients of the shroud vortices operated

on by the functions of Eq. (2.6).

These functions may be simplified and expressed in terms

o. known functions. The sine terr of the exponential is odd

and cos 20 and sin2 9 , even, so that the imagina.-y part

of F is zero. For the real part we first note the trig-

onometric identity
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2 cos 2mNO . cos 28 =

cos 2(iN+l)8 + cos 2(mN-1)0 (2.7)

and then use the trigonometric integral form of the Legendre

function of the second kind and half order On_ , developed

under this programl 3 ,

= J Cos 2nO 2 dO (2.8)

-n/2 (2(1-1) + 4 sin

by differentiation with respect to the parameter . Com-

paring the resulting forms, we have

ax
F V em ;-y3m mli-i',(

( = (1 + v2/2) (2.9)

where S,. = (C.mN+/2 + QmN-3/2 ) and the prime denotes

total differentiation.

Alternatively, Fm may be expressed in complete ellip-

tic intyrals or Riegels' functions1 3 . For the higher

harmonics, the Legendre functions are more convenient. For

any order they have the same logarithmic singularity at an

argument of unity and decrease monotonically to zero for

increasing argument, see Fig. 2.1. At any argument, they

14decrease monotonically with order. NBS tables , as well

as extended tables1 5 prepared lnder this study are available.
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SECOND KIND AND HALF ORDER
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To derive an equation for the vortices shed from the

shroud in a form like Eq. (2.5), we can proceed along similar

lines. The only essential complication appears in the addi-

tional integration over the dummy time variable T . There-

fore, we interchange the order of integration of T and 8

and then use dev'/2 as the variable of integration instead

of 6 . This gives a corresponding FT, in terms of an

integration over the Legendre functions. That is, we find

. e 5 J Cm(iv ) F ,Y .o(A) di-, (2.10)

where FT)'m is given by a Fourier integral over the dimen-

sionless dummy time variable 7 E CIT , or

F.) IN eimN( i so(~

w2  1 + x (2.V/)

and "' =  ?.+l/2 - N-3/2 ) 
. The product of the propeller

advance ratio J and the propeller tip clearance parameter

4 defined by
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J U/R p (2.12)

iL E R (2.13)

represent the "shroud advance ratio" U/GR . The factor

imN results from the differentiation of the shroud vor-

ticity. This differentiation which is carried out term-

wise is justified on a physical basis.

2.3 Decomposition of Governing Equation for LL

The Lntroduction of the expansion of Eq. (2.1) for y

has permitted the explicit integration over v . if we now

express the propeller contributions in terms of their Fourier

components, we can decompose the single equation for the

vortex distribution over the shroud surface into an infinite

set of uncoupled equations integrated along the chord.

Let UCpm(s) and UC .m (xs) be the complex Fourier

coefficients of the radial velocity induced on the shroud by

the bound and shed propeller vortices, or

q = U z Crm ei~nNe s  (2.14)
-r -r

U , C r =m eit4es (2.15)
m-- -0
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To find these coefficients we have, from orthogonality, the

relations

i. I reimNes des (2.16)

cinN d% (2.17)

for a period of 2n Since and a" i--rare real

quantities, the values of these coefficients corresponding to

+m and -m , must be complex conjugates.

First, substituting Eq. (1.2C) into Eq. (2.16), we trans-

form to the non-dimensional quandities previously used and

interchange the order of the rv - and Os -integrations.

Sir-e the 0. dependence is periodic over the range of i.nte-

gration, we adjust the limits to (-w i 2wiTN) < es e (w + 22e,.

and integrate on 6 6 AO/2 for -n/2 8 ,T/2 . The depend-

ence over the blade summation index 2 , then, disappears from

this integral since it occurs only in the exponential power,

-2nmi, which is equal to one for any integer ml . That is,

for N identical blades, each blade contributes equalil to

any harmonic. The integral on 9 itself, after removing a

factor of rv 3 / 2  from 53 , is evaluated in terms ,f the

Legendre functions Qn- by means of an equation analogous

to Eq. (2.,) for th- sine function, as well as Eq. (2.3)
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The final result is,

_l+ [ a 2 + (i- v) 2 ]/2 v  (2.18)

The non-dimensional blade circulation f ic defined by,

r = r/p U (2.19)

Instead of U, Rp could be used, but the translational

s;-, ad is better for primary emphasis on the shroud.

If we substitute Eq. (1.21) into Eq. (2.17), wa can pro-

ceed in the sane way. The complication of the integration over

the dummy time variable 'r can be handled by an integration

interchange corresponding to the analysis for the vortices shed

from the shroud. Carrying this out, we find that

g~t -, - -4

rm 872 f .'vMN

"V

- iii T No) I dr drv

a---1+ [ P2 + (,-)2 ]/2i (2.20)

which is a Fourier integral.
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In a broader sense, Eqs. (2.18) and (2.20) represent the

harmonics of the radial velocity of a free propeller in an

unbounded uniform stream. That is, xs , R are interpreted

as the coordinates of an arbitrary field point. S. Tsakonas

and J. Breslin have determined the harmonic components 1 6 of the

pressure field for a free propeller using the same vortex

representation. Their results are expressed in complete

elliptic integrals instead of Legendre functions.

Now, we substitute Eqs. (2.5), (2.1C), (2.14), (2.15),

(2.18) and (2.20) into Eq. (1.5) and equate the coefficients

of each harmonic. After transposing the propeller terms, we

obtain

6 0Om E(xs ) - Crm(Xp) - Cr-m(p) =

C( xv; F (a ) + e (A ) dxv  (2.21)
M( V m v Vlfl v v

where 60m is the Kronecker delta and m extends over all

negative and positive integers. The shroud camber appears

only in the zeroth harmonic since it is axisymmetric by

assumption. In other words, in inviscid flow:

The effect of axisymmetric shroud camber for a ducted

propeller at zero angle of attack appears only in the steady

shroud load for a fixed blade loading.
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2.4 Splitting of Governing Complex Equation

In complex form, Eq. (2.21) constitutes a doubly infinite

set of equations over all m for the coefficients Cm(Xv)

which determine the shroud vorticity. Alternatively, we can

separate the real and imaginary terms, producing an infinite

set of coupled pairs of equations in Am and Bm over

m = 1,2,3

For simplification, we note from the recursion relation-

ship for the Legendre functions

Qn-_ = 0 nh (2.22)

that,

St = S_mN

TMN -TN (2.23)

From Eqs. (2.9) and (2.11), then, we have that F ,+m and

F _m are complex conjugates and F ,,+m and F7",-m are

complex conjugates. That is,

F = (F _)

F,_m = R(FYm)

F. Y,4 = 9(F- m) + i (F - M )

Fy.,_m 9,(F Y m) - P(F, .) (2.24)
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In addition, the propeller Fourier coefficients for +m and

.-a are ;omplex conjugates. In fact, if Eqs. (2.23) are used

in Eqs. (2.18) and (2.20), tho equatlons for Cr,+m and

Cr,_m are the same as for FT,+m and FT,_m with the real

part replaced by tb's- imaginary part, and the equations for

cr,,+m and Cr,-m are exactly the same.

V''- these results and Eqs. (2.2), we can add and sub-

tract . (2.21) into a ret of coupled equations

for and B

2 16 2(Cr'm) =

_X( B Y,,(F -+ F Y, ) + A (F "r M d, , (2.25)

and,

- 2c(Crm) - 2 (Cr'm)

fX m _ A(F m + F Y'M) + BmI(FYm) ) diV (2.26)

-),

where m = 0,1,2 ... For m , A0 = 0 as noted before

and Eq. (2.25) determines B0

The intermediate .form of Eqs. (2.25) and (2.26) may be

further simplified. First, from the recursion relation1,
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- (2. 2)2"n-h --_ 0+h - %n-3/2(.2)

the sin mNT term of R(C_,m) , corresponding to the elements

convected by the axial flow, may be reduced to Q ._- On the

other hand, the term produced by the swirl depends on AxpT

but this is a perfect differential in T ; i.e.,

(CD OL(-Ai (2.28)

Integrating this contribution to -:(C ,M) by parts and not-

ing 0n- goes to zero at infinity, we get a contribution

independent of i from the lower limit and can add the remain-

ing integral to the reduced axial terms.

The term ; (Crm) yields to analogous steps while ;(Crm,

requires only Eq. (2.27). If we set C.(2Cr'm) B Br'm

#.(2Crm) - Arm and 4 (2Cr'm) - Ar 1m , we get

B"m 4-n2 j 0  v mN(3)-

gmN_ ( )) d v  (2.29)

Apm =- 2 J 32 ~ )d
2 r 0 3(

Ar'm = Jr " ( h-(APrv) I drv (-3)
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The functions gmN and hmN are Fourier integrals given by:

g MN [ QL _ + Sm ] sin mNi d

hm a-MN Vf f r QmN- + St  J Cos mNT di (2.32)
0 V

with QmN-% and Stn having the argument "

Turning to the kernels of Eqs. (2.25) and (2.26), we find

that they can be expressed in similar, but simpler, terms. In

fact, we can show that one is proportional to the derivative

of the other, or,

F d ) (2.33)

Therefore, we can define a single kernel, say Km --(J±/mN)

(FYm) , and obtain

%(O V) = 7R1 I sMN(a; ) - gmN(av, 1) l(234)

where the argument of CmN-k and StMN of gms(av,l) is

( because r is unity. -6kS'(Zi)/47 is readily identified

as . (F-m) or the contribution of the bound vortices.

From Eqs. (2.29) through (2.34), the intermediate forms

of Eqs. (2.25) and (2.26) assume the final forms,
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260M e - Br- B d

0 m -d -Y BmKm v (2.35)

Arm + Ar"m

fv + A v (2.36)

where C is a function of s A , ,m 0 and ,of

xp) ; Am and Bm , of x ; and Km, of (X- xv ) . For

m = 0 , AC = 0 and Eq. (2.35) determines B0

2.5 Discussion of Coupled Equations

Eqs. (2.35) and (2.36) for the bound chordwise di-

tions of the shroud vorticity contain several important fedi._es

First, the propeller contributions depend only on the

axial separation of the shroud point and the propeller plane

for a given number of blades, blade loading and tip clearance.

Since they do not depend on the angular position of the blade,

the effect of finite blade chord could be incorporated in the

present formulation. That is, the blade could be represented

by a distribution of radial elements with 0e ee(xp) and

r = (r v,ip) . The corresponding propeller Fourier coeffi-

cients would then be integrated over the appropriate range

of XP



37

Second, the coupling of the equations is due to the swirl,

or 0 , of the incoming flow. In other words, from the inter-

mediate forms of Eqs. (2.25) and (2.26), the equations would

be independent only if 4 (F - ) were zero. But from Eq. (2.11

this requires that - 0 . To see this, we resubstitute

= P.T and use the alternative dimensionless time ^ E UT/R

Then the exponential factor becomes one as Q - 0 and the

swirl terms disappear, giving the real quantity

lim F ,-m f TN(a; )dT (2.37)n 0 m 4
0

where~ ~~~ ,,=1+(u_ 2
where =1+ (a _ -T) /2 . The decoupled equations have the

same kernel which has a Cauchy singularity.

Third, various singularities will appear in our governing

equations. In general the propeller contributions will remain

finite since U < 1 . For the limiting case of g - 1 , a

special study of the anticipated behavior of the bound blade

circulation near the tip is necessary. On the other hand, the

chordwise distributions of the bound shroud vortices and the

kernels will possess infinities. The coefficients Am  and BM

will have square-root singularities at the leading edge of the

shroud since the fluid must usually flow around an edge of

zero radius. Under special conditions of tangential Ilow

entry at the leading edge, these singularities will disappear.

The kernels will always be singular at the zero of their argu-
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ment, however. That is, in integrating over the shroud we

must always pass over a contributing element. To determine

the nature of these singularities, we need the logarithmic

behavior of the Legendre functions near unity. From Ref.13

we have

Qn_ (w) = en( i-l) + O(1-l) Ln(I-l) (2.38)

The integrand of gm (0,1) , then, has a i In i behavior

near the lower limit, the only region of concern. Since this

is bounded, g mN(AX .l) is regular dt Axv = C . But, Sn,

the remaining term in Km , gives two equal logarithmic con-

tributions and Eq. (2.34) becomes,

Km( -v) - InJvj (2.39)

near 6x r and the integral of Eqs. (2.35) and (2.36)

must be interpreted in the Cauchy principal value sense. This

singularity is due to the shed vortices which, in the neigh-

borhood of 6v - C , appear as a semi-infinite sheet ofv

vortices of constant strength. In contrast, differentiating

Eq. (2.39), we have the usual Cauchy singularity of two-

dimensional airfoil theory. Because --2vS'(a)/47 is the

bound shroud vorticity contribution, this result ir antici-

pated. In fact with neither swirl nor propeller terms,

Eqs. (2. 5) and (2.3t) reduce to the zeroth harmonic for B
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which represents an axisyametric ring at zero angle of attack

in a uniform stream U . For the limiting case of infinite

duct radius, the regular part of the kernel vanishes, leaving

the singular part as the proper result.

Fourth, after removing the swirl, the decoupled equations

are identified with the general equations for an infinitely
9

thin ring wing as developed by Weissinger . For the pro-

peller and camber terms, this simply requires their reinter-

pretation as the coefficients of a trigonometric expansion for

any specified radial wash that the shroud system must cancel.

For the kernel, though, we need to show that the sum of the

contributions from Eqs. (2.9) and (2.37) equals his results.

The Cauchy singularity, as we have seen, coincides with the

singularity of his kernel. This comes from the "bound" term

-AxSvXs /4. r , which is invariant with the swirl and which is

equated to its counterpart simply by the relationl 3 between

Qn-h and the Riegels function17 Gn

%n-(w1) = - "  3Gn( 2 )/4 (2.40)

where '.2 = 2/(03+1) . To equate -gN(a ,1)/4w and its

counterpart, or the " hed" terms, is more difficult. One way

is to re-express T., in the Legendre integral form of

Eq. (2.8) and interchange the order of integration. Integra-

tion on T represents a semi-infinite straight vortex and

can be carried out. The remaining integration then agrees

with the corresponding Wel ssinger terms in integral form. Since, in
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turn, he expresses these in Riegels functions, the final

identity by means of Eq. (2.40) becomes for mN 0

T (W 2 )Tf+x T -N

v ( QA +2Q 3 / 2 .. .+20 +Q (2.41)

a result which is needed later. The arguments on the RHS

are a1

2.6 Shroud and Propeller Loading

After the determination of the shroud vortex distribu-

tions, the total perturbation velocities induced by the ducted

propeller system may be computed at an arbitrary field point.

This permits the calculation of the shroud pressure loadings

as well as the propeller inflow velocities.

The required velocities Sr , 3r,, '1- and 3, are

given in general by Eqs. (1.12), (1.13), (1.14) and (1.15).

Any component of the flow is evaluated by taking the appro-

priate scalar dot product into a unit vector in the desired

component direction. Reduction tc harmonic expressiona in

terms cf the tabulated Legendre functions of second kind and

half order follows the previous derivations.

To find the pressure, we use a linearized form of

Bernoulli's equation. In the propeller-fixed coordinates,

the flow is steady but rotational. Therefore the total head,
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or static plus dynamic pre3sure, is constant only along a

streamline ' . That is,

p + pq S/21P

p. + p(u2 + 22 )/2 (2.42)

where p is the static pressure and p is the fluid density.

By our assumption of small disturbances, the deflection of any

streamline is negligible in Eq. (2.42), and we may use the

same radius r for p and _ as at infinity. Omitting the

higher order velocity terms as before, we have for Ap (p-pD)

AP - ( + + SI~+ I(2.LL3)

with _U from Eq. (1.1) for a = 0 . Only the axial and tan-

gential components of I , ... are necessary because U does

not have a radial oomponent.

From Eq. (2.43) and the induced velocities, the inner and

outer shroud pressure distributions may be computed. In detail,

these calculations are quite complex, but the net iLoading, or

the inner pressure minus the outer pressure Ap] J.s simply,

APJ -PUy (2.44)
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This we find from the Kutta-JoukowskI force on a boiud vortex

element or from Eq. (2.43) since the only discontinuous velo-

city component at the element is produced by the element itself

and is in a plane normal to the element. The leading edge

force, if present, may be calculated in the usual manner

from the coefficient of the singular term of the Glauert

series for Am and Bm

Calculation of the axial and tangential components of

the induced velocities at the propeller plane will provide

the inflow quantities corresponding to the given loading.

With these quantities, the blade angle settings and forces

can be computed from the usual propeller blade element theoryl8

of S. Drzewiecki. Since the inflow is due to all the vortex

elements, the result is analogous to the Prandtl lifting line

approximation for wings of moderate aspect ratio and is con-

sistent with our representation of the blade ae a vortex spike.



CHAPTER THREE

SOLUTIONS FOR DUCT LOADING

3.1 Fundamental Solution

The zeroth harmonic of the shroud vorticity distribution

in propeller-fi'ed coordinates is independent of angular posi-

tion on the shroud for a given chordwise position. On the

other hand, if we transform to duct-fixed coordinates, we see

that this harmonic corresponds to the time-independent part of

the shroud vortex distribution. As such, it gives the average

or fundamental duct loading.

Setting m equal to zero in Eq. (2.35), then, we obtain,

2c(x) - B(r b (ap) = -f- 0 (x ) KC(av) div (3.1)

where the kernel -K.

-K= v Q (1 + a-v/2)

is simplified by the reduction of the "bound" terms from

Eq. (2.22) and by the absence of the "shed" terms. In fact,

Eqs. (1.22) and (2.8) show that -K'/R is the radial velocity

.nfluence function of a ring vortex of constant unit strength

evaluated at the same l lius R

From Eq. (2.39), the singular part of the keriael is

/2rAxv . Removing this, we have plotted the regular part of

4-3
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-27Kt , which is antisymnetric, in Fig. 3.1 and tabulated the
values in Table 3.1 for C ',x I . The regular pat

represents the three-dimensional effect of the vortex ring.

From Eq. (2.38), it behaves as aiv Zn iv at the origin,

increases to a maximum, and then decays monotonically. The

computational procedures followed those developed for the

Legendre functions15 , and the results agree with Weissinger's

alternate calculation9 , or U,(n) , where n corresponds to

The propeller contribution is also simplified for . = 0

From Eqs. (2.22), (2.29) and (2.32), we find

' 4 "'(() 0 v% d (3.2)

priori, we might not anticipate thic non-periodic contribu-

tion, but its identity will be established later.

Since BrO appears in parallel with the camber term, we

see that it is of cons derable significance. Without the pro-

peller term, Eq. (3.1) is the equation for a ring wing at zero

angle of attack. Consequently, the fundamental solution for

the ducted propeller may be taken from this ring wing solution

by using an effective camber ce

ce = e - Br, -/2 (3.3)
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TABLE 3.1

REGULAR PART OF KERNEL FOR ZEROTH HARMONIC

'V

0.00 0.00000

0.05 0.07981

0.10 0.13290

0.15 0.17629

0.20 0.21305

0.25 0.24482

0.30 0.27253

C.35 0.29683

o.4o 0.31815

0.45 0.33684

C.50 0.35322

0.55 0.36751

0.60 0.37989

0.65 0.39058

0.70 0.39966

C.75 0.40734

0.80 c.41370

0.85 0.41889

0.90 0.42298

0.95 0.42610

1.00 0.42833
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In other words:

The mean pressure difference across the shroud of a ducted

propeller at zero incidence in a uniform flow is identical tc

that of a similar ring wing of different camber.

Thus, experimental measurements on ring wings by

0. Ladurner19 and others, the xheoelectric analogy of

L. Malavard20 , and the theoretical methods of Weissinger9

can be applied to ducted propellers. Two points should be

noted. First, this result is exactly valid only within the

approximations of a linearized theory and of an inviscid

fluid. Second, the shroud does not have to be of zero

thickness. Though they do alter the effective camber, thick-

ness effects can be superimposed 21'22 within the limitations

of thin airfoil theory. In fact, with respect to the shroud

thickness, they are identical for a ducted propeller and its

equivalent ring wing.

3.2 Effect of Parameters on the Fundamental Load

The modification to the effective camber by the propeller

for the fundamental solution depends on the following parameters

(i) Blade number

(ii) Blade circulation strength

(ili) Advance rtio

(iv) Tip clearance

(v) Propeller position

(vi) Strength of the vortices shed from the blades
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To the extent, then, that camber effects are known for the

ring wing, the effects of these parameters on Ce determine

their influence on the steady shroud load.

To study Ce we exprezs the blade circulation in a

general form. In particular, in most cases for no loading at

the root and finite tip clearance, the circulation distribu-

tion will be zero at rv =C , without a hub, and at rv = ±

Therefore, we take

r Z r sin jA rv  (3.4)

j=l

where M  for convenience, is the maximum value of F and

r r ./i From Fourier analysis, we have,

rj = 2 -- sin )w rv dr (3.5)0 rM

to determine the coefficients.

With the blade circulation distribution of Eq. (3.4) the

propeller contribution B r' to the effective camber becomes

Br'o Nr 3 XI ( ) (3.6)

after interchange of the order of summation and integration.
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The characteristic functions Xj are given by

I1 A h
Xi I CoB jwrv dr

j 0  v (~ 03 v

2 A2VI  V) (3.7)

In the form of Eq. (3.6), the dependence of Br' 0 On the

various parameters can be examined.

The simplest dependence is on the blade number, magni-

tude of the blade loading and the advance ratio. For the

first two, the propeller camber contribution varies linearly

in a uniform fashion along the duct. When N or rM  is

zero, Br- 0  is zero as required. On the other hand, it is

inversely proportional to the advance ratio. As J-* 0

either by U - 0 or nl B-- 0 becomes infinite, which

corresponds to the collapse of the shed propeller vortices

into a disk of concentric vortices of infinite strength at

the propeller plane. In contrast, when the advance ratio

becomes infinite, the camber modification disappears. We may

interpret this result in the following way. Br-O depends only

on the variation of the blade circulation and not on the blade

circulation itself. That is, the only reason we have an effect

at all for finite advance ratios is the essential *mgearing"

of the basic periodic character of the blades by their shed

vortices as they rotate out of the radial-axial planes in

which they were shed. For infinite advance ratio, the shed
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vortices trail back axially. Then there is no smearing and

consequently no effective camber.

The influence of the three remaining parameters, the

blade circulation profile or r' s , the propeller position

x and the tip clearance variable p is not so easily

obtained. Analytically, we see from Eq. (3.7) that each

characteristic function is symmetric about the propeller

plane. Since the corresponding integration of Xj from

0 to ic is antisymetric, the equivalent shroud shape

"induced" by the j th Fourier component of the blade load-

ing is antisymmetric with an inflection point at A = 0

Different.iation of X with respect to Axp shows that the

slope of this induced camberline or contribution to the effec-

tive camber is a finite maximum or minimum at the propller

plane; i.e., d p - r- 0 . The result is valid

for the complete range of 0 L 1 as verified by the

logarithmic behavior of the Legendre function near its simgu-
larity and its asymptotic behavior13 of r 3/ 2 as 0

This agrees with the usual streamline patterns depicted for

a propeller which show larger Ladial velocities nearer the

propeller.

To furnish further inslght as well as practical working

figures, we have computed the characteristic functions for

j = 1,2,3,4,5 at values of . = C.75 , 0.90 , 0.95 and 0.99

If the propeller plane is kept within the shroud, the maximum

range of 4x p required for any calculation is 2X . We have
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considered values of C Ax I or a minimum of X = 0.5

for the case of the propeller plane at the shroud entrance

or exit. For a centrally located propeller, the maximum of

X = 1 is attained.

The results are given in Figs. 3.2, 3.3. 3.4, and 3.5

along with their tabulated values in Tables 3.2, 3.3, 3.4 and

3.5. As previously noted, the greatest effects occui at the

propeller plane and decay with increasing axial separation.

The decay is faster for the higher harmonics. Analogous

behavior is found for 4 or radial separation and is illus-

trated in Fig. 3.6, a cross plot of the absolute values of
-4

X at Up = C . The tabulation is accurate to 10 or better.

As the tip clearance decreases we know, for a constant

geometry, that the load near the tip does not generally decay

so early and that the subsequent shed vortex grows in strength23 .

In the ideal flow, however, this vortex disappears when the

tip Just touches the shroud and r'= 0 . The effect of the

tip vortex, then, may be examined by assuming a constant blade

circulation throughout the blade and approximating the tip

beh-vior by a step function. Substituting r = M l(4-iv)

into Eq. (3.:) and evaluating th3 integral, we get

2 2Br - Nr. Q + ]x ( -. (3.8)
rb' = r 2 (-.27T2 J 1

Consequently, the contiibution of a tip vortex of strength

rM to the effective shroud camber can be found from the
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TAMLI 3.2

CNAMCTBRISTIC rCTIOM Xj FO R = 0.75

0.00 0.25560 0.08093 0.03917 0.02296 0.01503
0.05 0.25317 0.07963 0.03837 0.02242 0.01466

0.10 0.24639 o.07602 0.03619 0.02098 0.01364

0.15 0.23614 0.07077 0.03309 0.01897 0.01224

0.20 0.22356 0.06464 0,02 62 0.01678 0.01075

0.25 0.20972 0.05831 0.02617 0.01467 0.00934
0.30 0.19543 0.05219 0.02299 0.01277 0.00810

0.35 0.18126 o.04654 0.02018 0.01114 0.00705

0.4o 0.16758 0.04147 0.01775 0.00976 o.00617
0.45 0.15462 0.03700 0.01569 0.00861 0.00544

0.50 o.14248 0.03308 0.01395 O.00765 0.00483
0.55 0.13121 0.02968 0.01247 0.00684 0.00433

0.60 0.12081 0.02673 0.01121 0.00616 0.00390

0.65 0.11126 0.02416 0.01013 0.00557 0.00353
0.70 0.10249 0.02192 0.00920 0.00507 0.00321

0.75 0.09447 0.01996 O.00840 0.00463 0.00294
0.80 0.08714 0.01824 O.00769 0.00425 0.00270

0.85 0.o044 0.01673 0.00707 0.00391 0.00218
0.90 0.07433 0.01538 o.00652 0.00361 0.00229

0.95 O.0687 0.01418 0.00602 0.00334 0.00212

1.00 0.06363 0.01311 0.00558 0.00310 0.00197
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TABLE 3.3
CHARACTERISTIC FUNCTIONS Xj FOR = 0.90

0.00 0.39179 0.14562 0.07773 0.04866 0.03338

0.05 0.38341 0.13947 0.073C5 0.04499 0.03044

0.10 0.36257 0.12492 0.06246 0.03701 0.02426

0.15 0.33623 0.10797 0.05100 0.02892 0.01834

0.20 0.30873 0.09194 c.0410y 0.02241 0.01386

0.25 0.28215 0.07800 0.03318 0.01760 0.01073

0.30 0.25734 0.06632 0.02713 0.01415 0.00859

0.35 0.23461 0.05671 0.02254 0.01167 0.00710

0.40 0.21396 0.04885 0.019c6 0.00988 o.Oco04

0.45 0.19529 0.04243 0.01639 0.00853 0.00525

0.50 0.17845 0.03716 0.01431 0.00751 0.00465

0.55 0.16328 0.03282 0.01266 0.0D67o 0.00417

0.60 0.14960 0.02921 0.01133 0.0o60o4 0.00378

0.65 0.13727 0.02620 0.01024 0.00550 0.00345

0.70 0.12612 0.02365 0.00933 0.00504 0.00317

0.75 0.11605 0.02149 0.00855 0.o0464 0.00293

0.80 0.10693 0.01962 0.00788 0.00430 0.00272

0.85 o.09865 0.01800 0.00729 0.00399 0.00253

0.90 0.09114 0.01659 0.00678 0.00372 0.00236

0.95 o.08431 0.01535 0.00631 0.00347 0.00220

1.00 0.078o9 0.O1424 C.00589 0.00325 0.00206
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TABLE 3.4

CHARACTERISTIC FUNCTIONS Xj FOR 4 = 0.95

0.00 0.46299 0.18750 0.10654 0.07000 0.04994

0.05 0.44552 0.17310 0.09451 0.05980 0.04120

0.10 O.41G5C 0.).4641 0.07381 0.04347 0.0281C

0.15 0.37306 0.12091 0.05605 0.03078 0.01882

0.2D 0.33766 0.09956 0.04279 0.02225 0.01314

C.25 0.30543 0.08238 0.03326 0.01669 0.00972

0.30 0.27652 0.06874 0.02647 0.01306 0.00762

0.35 0.25071 0.05795 0.02161 c.o1o64 0.00628

0.40 0.22773 0.04939 0.01809 0.00898 0.00537

c.45 0.3725 0.04256 0.015Lt8 0.00779 0.00472

0.50 0.18898 0.03707 0.01351 0.00690 0.00423

0.55 0.17264  0.03262 0.01198 0.00621 0.00384

c.60 0.15801 0.02898 0.01076 0.00565 0.00352

0.65 o.14488 o.02596 0.00977 0.00519 0.00325

0.70 0.13307 0.02344 0.00895 0.00480 0.00302

0.75 0.12241 (.02131 0.00825 0.00445 0.00281

0.80 C.11279 0.o1948 0.00t65 0.00415 0.00262

0.85 0.10408 0.01791 0.00712 0.00388 0.00245

0.90 0.09618 o.01654 o.o664 0.00364 0.00230

0.95 r..8900 0.01533 C.00622 0.00341 0.00216

1.00 0.08247 0.01426 0.00583 0.00321 C.00204
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TABLE 3.5

CHARACTERISTIC FUNCTIONS X FOR ± = 0.99

-x x_4

0.00 0.55041 0.24839 0.15401 0.10893 0.08285

C.05 0.50412 0.20640 0.11589 0.07423 0.05118

c.1c 0.44968 c.G1677 0.08094 0.04614 C.02850

C.15 C.40135 C.12906 0.05748 0.02973 0.01693

C.20 C.3592C G.10346 0.04198 0.02025 0.01105

C.25 0.32248 C.084cc 0.03166 0.01468 0.00796

0.30 C.29043 c.o6913 C.02471 0.01132 0.00625

C.35 C.26236 0.05769 0.01995 0.00921 0.00523

0.40 u-.eZii68 .04b81 C.01662 0.00-03 C.00457

C.45 0.21590 0.C4185 0.01423 0.00689 C.00412

0.50 0.19661 0.03633 0.01246 c.o0619 0.00376

0.55 C.17945 ,-.03191 0.01111 c.00565 0.00348

c.6o 0.16415 C.C2832 0.01005 c.0c521 c.00324

0.65 0.15G4o 0.02538 C.0C920 C.00484 0.0C303

c.(0 0.13818 0.02293 C.00848 C.00452 0.CO284

C.75 C.12712 0.02088 0.00788 0.00423 C.0c267

c.80 G.11715 0.01913 c.00735 c.oc398 C.00251

c.85 0.1C613 C.01762 C.00688 0.00374 C.00237

C.9c 0.099?6 0.01631 6.0o646 0.6635J 0.00224

C-'j C.09253 0.C1516 0.00607 0.00333 .0C211

1.00 o.06578 0.01413 C.-C572 0.00315 0.C020
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tabulated values of tAie Legendre functionl o15 Over a

range of values of g and Ac , the results may be esti-

mated from Fig. 2.1. For zero tip clearance, they possess

a logarithmic singularity near the propeller plane. Since

Eqs. (1.6), (1.18) and (2.8) show that the radial velocity

at x. R induced by a ring vortex of radius rv  is

-Ud YM 3)/) v  a perfect differential in

Eq. (3.8) is equivalent to the effect of a semi-infinite

cylindrical distribution of vortex rings of radiu& Rp ,

extending from x p to +- . The corresponding constant

strength per unit length in the axial direction is UNrMi/WJ

or alternatively, a uniform slipstream velocity increment of

the same amount. In this way, the previous results 7 using

the method of singularities, i.e., determing the effect of

the propeller by a pressure jump and uniform slipstream, can

be related to the present analysis by setting 4 = 1 and

xp = in Eq. (3.8).

3.3 Limiting Case of Infinite Advance Ratio

As the forward velocity U becomes very large compared

to the rotational velocity IR P at the propeller tip, we have

shown that the swirl terms disappear from the kernel. This

dccoupled cur governing equations, Eqs. (2.35) and (2.36),

for the chordwise shroud vortex distributions and reduced the

kernel Km to Weissinger's result. In terms of Legendre func-

tions, the reduced kernel is given by the sum of Eqs. (2.9)

and (2.37).
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Now, if we let the advance ratio become infinite in the

"shed" propeller teim ¢ and follow the derivation of

Eq. (2.37), we Lind that this term is purely imaginary, or

tim or, -

-- f'J T' d'dr (3-9)
87t or, 0

The argument of Tu is equal to d4 with J replaced by
A

its equivalent T . From their definitions, then, Brr is

identically zero in this case and A,; is given as minus

twice the imaginary part of Eq. (3-9). The single "bound"

propeller term remains unchanged.

With these results, Eqs. (2-35) and (2.36) are further

simplified for an infinite advance ratio. The subsequent

shroud vortex distributions for any harmonic can be found

from Weissinger's solutions 9 for a ring wing at zero angle

of attack in a uniform stream. In particular, for am we

see that B1 ,B2 ' ... are -dii zero since the real hzvui

cam)-nr appears only in the zeroth harmonic. The remaining

BC with Br,' C is the distribution for the act al duct,

which is assumed axisynunetric, without the propeller present.

This, of course, is the same as noted for BC  for finite J

since there are no shed vorties for axisymmetric loading.

On the other hand, for A , A-- 0 and A1 ,A2 .1'
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correspond to the vortex distributions of an equivalent

asymmetric duct under identical flow conditions. The equiva-

lent axially asymmetric camber, say eJ , has just a sine

harmonic dependence, or,

Ej ej (Aip) sin raN se (3.10)
m~ 1

where the axial camber coefficients

M- 2n(cpm+cp) (3.11)

follow directly from Eqs. (2.30) and (3.9). That is:

At high advance ratio, the resultant shroud loading on

a ducted propeller at zero angle of attack in a uniform

inviscid flow is equal to %he load on the isolated shroud

plus the loading on an equivalent asymmetric ring wing.

The inner integration on T (34 ) over " in Eq. (3-9)

is given by Eq. (2.41) for rv = 1 and by the infinite series,

CO Go a2j+lJ TN d = T (j+l) +j=¢ :2v)

7rvi (fm-f-MN)ff-l-f)](.
4- 2_ f) - 262,mN (3.12)

(J2l
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for 0 < r< < 1 . The argument oE the (j+l)th derivative

is 5 
- (l+(l-rv) 2/2rv) or a3 of Eq. (2.18) with iAX C)

i.e., the propeller plane, and f = . To derive
Eq. (3.12), T' is re-expressed in the integral form of the

Legendre function of Eq. (2.8) and the order of integration

is interchanged. The integration on 'r , which represents the

influence of a straight semi-infin1te vortex, can then be

performed. Expanding part of the subsequent integrand over

e in reciprocal square-root powers of ((l-rv)2+4rV sin 2 8) ,

the integral of each term is identified from Eq. (2.8) as a

derivative of a Legendre function of second kind and half

order. The other part is evaluated by suitable contour inte-

gration.

3.4 Infinite Blade Number

In many instances, the propeller blade number may become

quite large. For this case, an actuator disk solution is

desired which is the proper limit of our equations, retaining

the radial propeller load variation.

The propeller disk loading is proportional to the product

of the blade number and the strength of the blade circulation.

To obtain an actuator disk solution, we let the blade number

approach infinity but decrease the strength of the circulati.on

such that the product remains finite, or

.M .m NPM (3-13)S --c, M-
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If we examine the propeller modification of the shroud camber

by the zeroth ha:monic, see Eq. (3.6), we find that for these

parameters its only dependenc.e is linear with their product.

In the limit, then, this camber modification persists unchanged

and equal to the finite blade result.

On the other hand, the frequency of the first harmonic

and other time dependent terms of the shroud loading becomes

infinite. By definition of any actuator disk model, however,

the flow field must be time independent in coordinates trans-

lating with the propeller. Since these higher harmonics are

purely sinusoidal, their amplitude fcr infinite blade number

and finite disk loading must approach zero. Physically, this

establishes that:

The average pressure distribution on the shroud of a

ducted Propeller with a finite blade number corresponds to

the total loading on a similar model with an infinite blade

number but the same disk loading.

For an analytic proof, we have to note that the parameters

m,N, and rM occur in the propeller terms, see Lqe. (2.29)

(2.3C) and (2.31), only as the product mll and NFM . The

kernels, of course, contain just -1 as a parameter. Iathe-

matically, then, we have to expand 0n- for large order near

its singularity to show that all the propeller terms except

Br6 vanish and that the integral equations decouple.

The zeroth harmonic of the propeller terms for the actu ,-

tor disk limit has a broader significance, The term BFr
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gives the radial velocity component of a generalized actuaLcr

disk. The computation of the axial and tangential velocity

components is analogous to that of B, *. This model is not

limited to a uniform disk loading, nor to zero angle of attack

if the slipstream deflection is known. In other words:

The steady part of the flow field of any propeller with

finite blade number corresponds to the generalized actuator

disk solution with the samet disk loading.

3.5 General Solution for Higher Harmonics

We have shown that the higher harmonics, m =.1,2,3 ...

correspond to the time-dependent terms of the shroud loading.

The governing equations have, in general, to essei.tial fea-

tures which make a ntimerical solution more complex than the

ring wing proble)n. One is the coupling, and the other, the

occurrence of a logarithmic as we]. as a Cauchy singularity.

These difficulties can be treated by modification of Weissinger's

technique, but further reduction is more desirable.

First, it is possible to remove the coupling because of

the "derivative" relationship between the kernels. For m L 1

we let

I-- Am(---) K (Akv) 6cv

IB f Bm(Xv) K(&v) dv (3.L4)
B - nv
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and note

d
( v v) (3.15)

With Eqs. (3.14) and (3.15), Eqs. (2.35) and (2.36) become a

system of linear differential equations. Or, without the

shroud camber,

oA  B .m

- I , .rA + AA r

where differentiation across the integrals IA and IB  is

justified in view of the wea:k square-root and logarithmic

singularitlJ s of the integrands. Multiplying the firot of

" h r=MN/J4 and Iddina it to the derivative of

the second, we isolate I, - reversing the procedure and

subtracting, IB Both are of tL.e form

I - P(Xs) (3.17)

whirc is the second-order, linear differential equation for

a simplc harmonic oscillator subject to 4 forcing function.

That is, we view the irtegrals IA and IB  ol ouxc unmnown

vortex istributions as "particle displacement" anJ the axial

coordinate s as "time". The "totion" is undan.pea with a
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"natural frequency" a . The "forcing functions" for IA

and 1B are,

i A  (Apm+Ar - a Br

P B (Br ) (A rm+A rr)  (3.18)

respectively.

From these differential equations, IA and IB  are

determined, providing in turn, decoupled equations for Am

and Bm . To find the inhomoqeneous solution I i oi Eq. (3.17),

we take the "indicial response" Iu of the system to the unit

step function P % 1(X )

I (I,'C2)(i-cos OXs) !(: sc (3.19)

and use Duhar.el's 24 linear superposition method. After inte-

gration by parts, we have

i = P(i) sin a(% (3.2C)
-X

where P we *,now is well-behaved throughout the interval from

-X to X for C < < 1

Eq. (3.C), together with Eqs. (3.14) and (.18), yield

a simpler system of decoupled equations for the time-dependent

shroud vortex distributions vhich correspond to the iirst and
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higher harmonics of the radial flow induced by the propeller.

The form of these equations is siuilar to the general ring

wing problem, but the kernel -s completely different. However,

if we differentiate with respect to xs , carry the differen-

Liation bac%: inside IA and i B and use Eq. (3.15), we find

for the inhomogeneous solution,

Pf N (,() cos a t.d

-x

and,

f ' B(Z) cos aA dx

-x

B B (Xv) ,(&iv ) dv (3.22)
-x

where the "bound" term cf K' , or -SmN/4'T , is the same as

for the zing wing. Numeiiuai solutions, thcn, can follow

essentially along the lines of Woissinger's
9 .

The decoupling technique which we have employed raises

an important question. In addition to the inhomoganeous
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solution of the differential equation of Eq. (3.17), there

is the homogeneous solution Ih

h's _:" cos Cr A

(1/T) I : sin a Ax 3.23)

where IhI denotes the value of Ih(Xs) at any reference

point between thle leading and trailing edges with the leading

udge excluded; and i , the distance from th reference

point to xs  These solutions introduce a total of four

unknown constants for the corresponding IA  and IB . TWO

of these, though, result from the differentiation required

for decoupling. They may be removed by resubstitution into

eit'her of Eqs. (3.16) , o..ch shows that the relations,

- 0 = C

1 -C (3.24)

must be fulfilled in order for i'he coupled, homogeneous equa-

tions to be satisfied. We are thus left with tvto undetermined

constants as we should expect.

That is, consider an a:isymetric ring wing at zero inci-

dence in a uniforni, translating and rotating flow, with the

axis ot rotation coincident w-.th the wing axis. The equations
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sema to indicate, then, that it is possible in an inviscid

fluid to have self-sustaining load distributions of periodic

nature. Or. the radial velocity induced by the helicat

vortices shed from the shroud for certain shroud vortex dis-

tributions balances the velocity induced by the bound shroud

vortices. This is independent of thse camber within the

present assumptions, but depeiident on the swirl, vanishing

as the shroud "advance ratio" becomes infinite and decouples

the governing equations. The possible existence of these

self-sustaining solutions appeazs to be similar in nature to

the ,eceat investigation of H. Ludwieg10 * where he has ex-

amined the "ostability against the formation of helical

vortices" in an annular flow between two coaxial cylinders.

3.6 Exaule

To illustrate the pzactical appli~tion of the theory

we have computed the average shroud load distribution for

a particular ducted piopeller.

The values used for the parameters and the propeller

loading assuaved are,

J= 1

N- 2

xp= 0

- -0.38 i
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P = (2/3\f-)(2 sin w - sin 2n £)

X=0.5

= 0.95 (3.25)

where P is shown in Fig. 3.7.

With r1  4/3-13-, r 23/3' and rM = 1 , we

have computed and plotted in Fig. 3.8 the propeller contribu-

tLon, -Bp'0/2 , to the effective camber by means of Eq. (3.6)

and Table 3.4. The maximum camber distortion which occurs at

the mid chord or propeller plane is about 40% of the given

shroud ceimber at the trailing edge. The assumed F corres-

ponds to a disk loading, neglecting inflow, of 41.1 psf at

U = 200 mph and STP.

From Eq. (2.44), the net average pressure distribution

1p4 becomes by means of Eqs. (2.1) and (2.2),

cp] = -Bo(R) (3.26)

where Cp I Ap]/(pU2 /2) . For the determination of Bc(x)

for our example, we have employed an iteration technique
25

instead of Weissinger's procedure for the solution of

Eq. (3.1). The final result is shown in Fig. 3.9. It re-

quired eleven non-zero terms, including the singular term,

of the Glauert series and two iterations to obtain accuracy

to three decimal places.
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Without the propeller, the net leading is symetric about

the center of the shroud and vanishes at the leading and

trailing edges because the camber is antisymnetric. The

contribution of the propeller, however, is always symmetric

and su in this case introduces flow around the leading edge

and a leading edge singularity. This, in turn, gives rise

to a leading edge suction force which can 4~e found from th.-

value of 0.187 for the coefficient of the slngular term of

B .
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CONCLUSIONS

A three-dimensional theory has been developed for the

dacted propeller with finite blade number in uniform motion

t-:roug'ti an inviscid, incompressible fluid at zero incidence.

W.hin the approximations of a lightly-loaded propeller and

of thin airfoil theory, the following generalizations were

obt3ined:

The effect of shroud camber appears only in the
steady shroud load.

The steady preasure difference across the shroud
is identical to that of a similar ring wing of
different camber.

At high advance ratio, the resultant shroud loading
is equal to the load on the isolated shroud plus
the loading on an equivalent asymmetric ring wing.

The steady pressure distribution on the shroud
corresponds to the total loading on a simiar
configuration %-xth infinite blade number but the
same radial disk loading.

The steady part of the flow field of any propeller
withr finite blade number corresponds to a general-
ize' actuator disk solution with the same radial
die-. loading.

The theory is readily applicable to practical calculations,

partic-:arly the determination of the zeroth harmonic which

gives -le average shroud loadinc. By variation of paxametera,

the opt., wn configurations of Dickmann and Weissinger7 and
26

R. B. "'.ay and W. Castles, Jr. may be further investigated.

:qese results clearly justify similar analytic studies

of tle more complex ducted propeller problems.
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